

UGM 2020 Training Series

MedeA LAMMPS: Robust Gateway to Molecular Dynamics

Materials Design

October 13th, 2020

© Materials Design, Inc. 2020

Training & Support Team

Ray Shan presenter **David Reith** moderator

Taylor Juran

René Windiks

Siwen Wang

Please Ask Questions!

UGM 2020 Training Series

MedeA LAMMPS: Robust Gateway to Molecular Dynamics

Materials Design

October 13th, 2020

© Materials Design, Inc. 2020

Outline

MedeA LAMMPS

- MedeA Forcefields Bundle
- MedeA Mesoscale Simulations
- MedeA Deformation
- MedeA Deposition
- Conclusions

MedeA LAMMPS

- Integrated with other simulation engines
 - Quantum Methods (VASP, MOPAC, Gaussian) and Monte-Carlo (Gibbs)

- Integrated with other modules
 - Mechanical Properties, Deformation, Hill-Walpole Analysis, Forcefield Optimizer, and Highthroughput Launchpad

MedeA LAMMPS

Introduction to MedeA LAMMPS

Release 3.1.0

- · Objective: Learn how to set up and run LAMMPS simulations with MedeA
- · Modules: MedeA LAMMPS, Supercell Builder, Amorphous Materials Builder

Ŏ	Ŏ	\$
Preparation time	Run time (2 Intel cores)	Level
10 minutes	5 minutes	Beginner

MedeA LAMMPS

Watch the webinar

- ▶ Harness the Power of LAMMPS Molecular Dynamics Code with MedeA
- <u>http://my.materialsdesign.com/webinar-12</u>

MedeA Forcefield Bundle

Interatomic Potentials in MedeA

Metallic

- EAM *
 - All LAMMPS eam, eam/fs, and eam/alloy variants
- MEAM
- Inorganic
 - Buckingham (buck)
 - BKS (buck/coul)
 - Clay-FF (harmonic + lj + coul)
 - CVFF_aug(class2)
 - Morse/coul
- Semiconductor
 - Tersoff
 - Stilinger-Weber
 - REBO

- Organic (valence):
 - PCFF/PCFF+ *
 - Compass/Compass+
 - OPLS-AA/OPLS-AA+ *
 - AUA/AUA+ *
 - Trappe+ *
- Mesoscale
 - SPICA
 - Martini
- Variable charge
 - Streitz-Mintmire (eam + coul + qeq)
 - COMB3
 - ReaxFF

Cost of Classical Forcefields

- Long-range electrostatics: 10x more expensive than LJ
- Variable charge equilibration: ~100x more expensive than LJ

Flexibility with MedeA Forcefields

- Import external forcefield parameters
- Import external forcefield parameter files
- Develop new forcefields with MedeA Forcefield Optimizer

Visualize the Optimization

Training -2,352c+04 y = 1,1341 * x * -1,1076e+06 , r = 0,991 у = 0.76958 + н + +0.832468 , r = 0.63624 y = 0,34600 + x + 535,36, , r = 0,50349 -2,354c+86 -2,356e+86 -2,350e+96 -2,35e+96 -2,362e+96 -2,364e+86 -2,366e+86 Energy Force **Stress** -7,368e+86 -2.37e+06 -1,1120+06 -1,110+06 -1,1050+06 -1,1050+06 -1,1040+06 -1,1020+06 -1,10+06 -1,0000 -10030000 -25088 -28088 -15088 -18088 -508 10000 15898 Reference potential energies in k.I/mal Reference forces in kJ/enl/Bre Reference stress in ha

Validation

Interatomic Potentials in MedeA

► Watch the webinar:

Classical Forcefields for Modeling Materials on Atomic Scale

<u>http://my.materialsdesign.com/webinar-10</u>

$$\begin{split} E_{re} &= \sum_{i=1}^{n} \left[K_{2}(r-r_{e})^{2} + K_{3}(r-r_{e})^{3} + K_{4}(r-r_{e})^{4} \right] \quad U_{ij}(r) = \frac{q_{i}q_{j}}{r_{ij}} + A_{ij}e^{-r_{ij}/\rho_{ij}} - \frac{C_{ij}}{r^{6}} \\ &+ \sum_{i=1}^{n} \left[V_{1}\left\{ 1 - \cos(\varphi - \varphi^{e}) \right\} + V_{2}\left\{ 1 - \cos(2\varphi - \varphi^{e}) \right\} + V_{1}\left\{ 1 - \cos(3\varphi - \varphi^{e}) \right\} \right] \quad X_{i} = -\mu_{i} = -\frac{\partial E(\varphi)}{\partial \varphi} = e^{\frac{\partial E(q_{i})}{\partial q_{i}}} \\ &+ \sum_{i=1}^{n} K_{i}\chi^{2} \qquad \mathbf{F}_{i} = -\frac{\partial E}{\partial E} / \frac{\partial F_{i}}{\partial 2} \mathbf{F}_{i} = \frac{\pi}{P_{i}} \mathbf{M}_{i} \mathbf{A}_{i} \mathbf{f}_{i} \mathbf{f}_{i} \\ &+ \sum_{i=1}^{n} \sum_{r_{i}} K_{i}\chi^{2} \qquad \mathbf{F}_{i} = -\frac{\partial E}{\partial E} / \frac{\partial F_{i}}{\partial 2} \mathbf{F}_{i} \mathbf{F}_{i} \mathbf{M}_{i} \mathbf{f}_{i} \mathbf{f}_{i} \mathbf{f}_{i} \mathbf{f}_{i} \\ &+ \sum_{i=1}^{n} \sum_{r_{i}} K_{i}\chi^{2} \qquad \mathbf{F}_{i} = -\frac{\partial E}{\partial E} / \frac{\partial F_{i}}{\partial 2} \mathbf{F}_{i} \mathbf{f}$$

MedeA Mesoscale Simulations

MedeA Mesoscale Simulations

Watch the webinar

- Extending Time- and Length-Scales with Mesoscale Simulations
- http://my.materialsdesign.com/webinar-36

Demo: DPPC in water, bi-layer self assembly

MedeA Deformation

Deformation Simulations

Tensile deformation of CNT with Tersoff

Tensile deformation of PE with PCFF+

Crack propagation of Zr with EAM

Shear deformation of Co/WC interface

MedeA Deformation

Watch the webinar

- Elasticity and Beyond: Predicting Mechanical Properties with MedeA
- <u>http://my.materialsdesign.com/webinar-33</u>

Demo:

<u>http://my.materialsdesign.com/webinar-38</u>

MedeA Deposition

MedeA Deposition

Watch the webinar

- MedeA Deposition: Atomistic-Scale Simulations of Deposition, Growth, Oxidation, and Etching at your Fingertips
- <u>http://my.materialsdesign.com/webinar-26</u>

MedeA Deposition Examples

MedeA Deposition

Cold Spray of Cu Nanoparticles on the Cu Surface

Release 3.1.0

· Objective: Learn how to simulate the cold spray of metal nanoparticles onto metal surfaces

· Modules: MedeA Deposition, MedeA EAM, MedeA LAMMPS

Ö	Ŏ	\$
Preparation time	Run time (4 Intel cores)	Level
30 minutes	2 hours	Intermediate

Conclusions

In this live demonstration, we looked at:

- ▶ *MedeA LAMMPS*, the robust gateway to classical molecular dynamics simulations
- The collection of interatomic potentials in MedeA, including those for metals and alloys, semiconductors, ionic systems, and organic systems, as well as the variable charge potentials
- The steps to export and edit an existing potential (frc) file, and that for importing any external potential parameters into MedeA
- The MedeA Mesoscale, Deformation, Deposition modules that employ interatomic potentials for simulating a wide variety of materials processes and properties

List of Resources

► Tutorials:

- Introduction to MedeA LAMMPS: Learn how to set up and run LAMMPS molecular dynamics simulations with MedeA
- Importing External Potential Parameters into MedeA: Learn how to import external potential parameters and files into MedeA
- Deposition of O2 on a Si Surface with Reactive Potentials: Learn how to perform deposition simulation with reactive potentials using MedeA Deposition
- Cold Spray of Cu Nanoparticles on the Cu Surface: Learn how to simulate the cold spray of metal nanoparticles onto metal surfaces with MedeA Deposition
- Plastic Deformation and Fracture of Single-walled Carbon Nanotube: Learn how to set up and run plastic deformation and fracture simulations with MedeA Deformation
- Mesoscale Simulations of Water and Octane: Learn how to set up and run a mesoscale simulation of a mixture with MedeA
- Self-assembly of Lipid Bilayer: Learn how to run a mesoscale molecular dynamics simulation of self-assembly on a time-scale of a microsecond with MedeA
- Mechanical Properties of a Thermoset Through Mesoscale Simulations: Learn how to predict mechanical properties of a thermoset through mesoscale simulations
- Webinars:
 - MedeA 3.1: <u>http://my.materialsdesign.com/webinar-38</u>
 - MedeA Mesoscale: <u>http://my.materialsdesign.com/webinar-36</u>
 - MedeA Elastic Properties and Deformation: <u>http://my.materialsdesign.com/webinar-33</u>
 - MedeA Deposition: <u>http://my.materialsdesign.com/webinar-26</u>
 - MedeA ReaxFF: <u>http://my.materialsdesign.com/webinar-17</u>
 - MedeA LAMMPS: <u>http://my.materialsdesign.com/webinar-12</u>
 - MedeA Forcefields: <u>http://my.materialsdesign.com/webinar-10</u>

Materials Design UGM GOING GLOBAL October ugm.materialsdesign.com

Announcements

ugm.materialsdesign.com

Professor Georg Kresse

University of Wien

Dr. David Reith Materials Design

Tomorrow's Plenary Speaker

October 14th

Next Week's MedeA Training

October 20th

More	. UGM		🌲 🏶 🗸	Anr	nouncements
JGM 2020 Forums		Q Sea	rch 💮	Visit t	he UGM Forum page
UGM 2020 Dis Get help. Contribute ideas. Ask	CUSS questions. J	on Fo	orum	https://ww	vw.ugm.materialsdesign.com/forun
General Discussions Share your UGM experience, ideas, pictures and more!	③ 4	口 1	Follow :	< <u> </u>	Get help on training
Plenary Sessions Discuss the sessions, ask questions, post comments	© 12	Ç 3	Follow :	< <u> </u>	 Contribute your ideas Discuss the posters and plenary presentations
Training A Follow the training sessions, ask questions, post comments	© 0	口 0	Follow	<	Ask questions

Technical Sessions

Additional resources, posters, and video presentations of scientific and technical research in the MedeA community.

poster

Risk Assessment of Drug Substance Tabletability using Quantum Mechanical Methods

In this work, periodic density functional theory as implemented in MedeA-VASP MT module was used to predict the mechanical properties of the single crystal structures of Vertex compounds along with other literature and small organic molecules in an automated manner

poster

The Color of Materials: Value from Computed Optical Properties

This poster provides guidelines for the calculation of the color of materials within the MedeA computational environment and illustrates the steps leading from the structure of

Contributor Volker Eyert

Announcements Visit the Technical Session page Submitted Talks and Posters

- There is still time to submit
- Open to customers under maintenance
- Easily upload on the contributor's page •
- Interested? Do you have questions? ٠
 - Contact Volker Eyert •
 - UGM@materialsdesign.com

Innovation by Simulation